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Abstract 
 
We propose a symbolic notation inspired by L-systems and a graphical representation based on Petri 
nets to formally describe architectural tree models introduced by Hallé and Oldeman (HO models).  
The two formalisms are related, but lead to visually different model presentations and are preferable 
in different applications.  Specifically, L-systems are useful as an input for simulation programs, 
whereas Petri net graphs lend themselves to more intuitive comprehension of some aspects of the 
models.  We focus on the developmental fate of the apices, configuration of the branching points, 
and plagiotropy and orthotropy of  tree axes as the key characteristics of HO models. Contrary to the 
original HO classification, we do not consider the distinction between continuous and rhythmic 
growth.  With this limitation, in this paper we are able to characterize most HO models using L-sys-
tems and Petri nets.  
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Résumé 
 
Nous proposons une notation symbolique inspirée par les systèmes de Lindenmayer, ainsi qu’une 
représentation graphique fondée sur les réseaux de Petri, pour caractériser formellement les modèles 
architecturaux qui avait été introduit par Hallé et Oldeman (dits modèles HO).  Les deux 
formalismes ont des représentations visuelles distinctes et sont préférables dans des domaines 
d’application différents, malgré leur liaison sur le plan conceptuel.  Spécifiquement, les L-systèmes 
se voient utiles pour entrer des modèles d’arbres aux programmes de simulation, pendant que les 
réseaux de Petri se prêtent mieux à la compréhension intuitive des modèles.  Nous utilisons les deux 
formalismes pour caractériser les modèles HO aux termes du développement des méristèmes 
apicaux, les configurations des points de ramification, et la distinction entre la plagiotropie et 
l’orthotropie des axes.  Par contre, nous ignorons la distinction entre la croissance continue et 
rythmique, un des facteurs majeurs considérés par Hallé et Oledeman.  Etant donne cette limitation, 
nous présentons les L-systèmes et les réseaux de Petri qui décrivent  la majorité des modèles HO.  
 
Mots-clés: modèle architectural d’un arbre, ramification, L-système, réseau de Petri. 

 

1.  Introduction 
The term tree architecture refers to the essential qualitative features of the structure and 
development of a tree crown.  Hallé and Oldeman (1970) proposed to group tree architectures into 
23 classes, called architectural models.  This HO classification was subsequently expanded and 
popularized by Hallé, Oldeman and Tomlinson (1978), and concisely presented by Bell (1991).  
Although other schemes for classifying tree architectures also exist (a short survey is presented by 
Robinson, 1996), the HO classification is the most widely used one. 



The HO classification was formulated in terms of a verbal description of the individual 
architectural models, accompanied by schematic drawings of representative trees. Although the 
classification criteria have been succinctly stated (Barthelemy, Edelin and Hallé, 1991), the HO 
classification remains descriptive in character, making it difficult to discern the essential features of 
each class and analyze logical relationships between them.  To address these limitations, we 
propose a formal characterization of the architectural tree models based on the following criteria: 

• The sequencing of developmental events including, in particular, the developmental fate of the 
apices, 

• The configuration of branching points, taking into account: 
- distinction between terminal and lateral apices, 
- dominance relationships between the apices, 
- position of vegetative and flowering apices; 

• plagiotropy and orthotropy of axes. 
 
We express the individual models using a symbolic notation inspired by Lindenmayer systems 
(Prusinkiewicz and Lindenmayer, 1990) and a graphical representation based on Petri nets 
(Peterson, 1981).  L-systems already have many applications in botany, including a classification of 
inflorescences (op. cit., Chapter 3). Botanical applications of Petri nets have also been reported 
(e.g., Lück and Lück, 1991; Barlow, 1994). In the descriptions of tree architectures, these 
formalisms lead to visually different presentation of the models and may be preferable in different 
applications. Specifically, the symbolic notation of L-systems makes them particularly useful as an 
input for simulation programs, whereas the graphical representation of Petri nets lends itself to 
more intuitive analysis and comprehension of the models.  Nevertheless, both formalisms are 
related to each other, as both of them emphasize developmental aspects of the architectural models.  
This is the key difference from a previous approach to formalize the HO classification (Robinson, 
1996), which was focused on the static aspects of crown structure. 

Our proposed formalisms provide only a partial characterization of the sequence of developmental 
events (mathematically, a partial ordering relation in the set of events).  Consequently, we do not 
capture the distinction between rhythmic and continuous growth, which was one of the 
classification criteria used by Hallé and Oldeman.  With this limitation, we are able to use the 
proposed formalisms to characterize the HO models and apply them to simulate individual tree 
species.  

 
2.  Specification of developmental patterns 
In order to describe architectural tree models we need to address two problems: the description of 
individual trees and the description of classes of trees – the architectural models.  Difficulties stem 
from the unbound number of components that may constitute an individual tree and the unbound 
number of related yet varied architectures that may belong to a single model.  A formal description 
of architectural tree models must thus provide a finite, compact, precise and intuitively 
understandable description of the unbound tree structures and their classes. 

The HO classification is based on the postulate that a plant can be viewed as a population of 
iterated (repeating) discrete units. We will consider relatively small units, such as primary 
meristems, branch segments (internodes), leaves and flowers, which we will call modules according 
to one of the accepted uses of this term (Bell 1991, p. 284).  Although a tree may consist of a large 
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number of individual modules, we assume that they exhibit only a finite number of different 
behaviors. This assumption reduces the description of the unbound number of individual modules 
to the description of a finite number of behaviors that define module types or states. A tree structure 
emerges from a (real or simulated) process of development, during which each module may grow, 
change type, produce new modules or die according to the rules proper to its type.  

In order to fully relate the behavior of modules in a growing tree to the resulting tree structure, we 
must also define how these modules are connected to each other and organized in space.  
Specification of connections between plant modules (i.e., the topology of a plant) is a relatively 
straightforward task, because the neighborhood relations between the individual cells, and by 
extension the modules, are determined upon their creation (plant cells and modules do not move 
with respect to each other). Consequently, topology of the whole structure can be inferred from the 
rules that characterize the creation of the modules. Similar rules can be used to specify changes in 
spatial relations between the modules due to their growth and reorientation. 

The rules describing the behavior of modules need not be deterministic and may allow for 
developmental choices.  This provides a means for characterizing not only an individual tree, but 
also an entire class of related tree architectures, using a finite set of rules.  This set thus becomes a 
formal specification of an architectural model. 

The concept of describing a plant as a growing assembly of modules governed by a small number 
of rules is formalized in the notion of L-systems.  They were originally introduced to describe 
relatively simple multicellular organisms (Lindenmayer, 1968), but subsequently have been 
extended to higher plants (Prusinkiewicz and Lindenmayer, 1990; Prusinkiewicz et al., 1997; for a 
historical perspective see Prusinkiewicz, 1999). The essence of an L-system is a set of one or more 
developmental rules, called productions in the standard L-system terminology.  Intuitively, a 
production specifies that a component of the structure, identified with the production’s predecessor, 
will be replaced by a structure consisting of zero, one, or more components, called the successor. 
The execution of a production corresponds to the progress of time by some interval (often a 
plastochron).  For example, Figure 1 shows the production that captures the development of a 
monopodial branching structure.   

apical meristem 
recreated 

flower

axis segmentproduces
apical 

meristem 

  Figure 1. Example of an L-system production 

 

The apical meristem – the predecessor – is replaced by an axis segment that supports a lateral 
flower and is followed by the apical meristem that continues the development of the axis.  
Repetitive application of this production yields a sequence of consecutive stages of the 
development of the plant (a developmental sequence), as shown in Figure 2.  The development 
begins with an initial structure (a single apex in this case), called the axiom in the L-system 
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terminology.  Each production application extends this structure by one segment with the 
associated flower.  A monopodial structure results. 

production step 3 axiom step 1 step 2

    Figure 2.  Developmental sequence generated using the L-system production from Figure 1      

 

A crucial feature of the L-system theory is a symbolic notation, based on the representation of plant 
modules by letters.  Sequences of letters denote modules arranged consecutively along an axis.  
Square brackets enclose branches. An example of L-system specification using the symbolic 
notation is shown in Figure 3.    The symbolic notation makes it possible to specify L-systems 
textually as an input to simulation programs, and characterize various patterns of development in a 
concise, non-ambiguous form.  This latter capability made it possible to classify inflorescence types 
using the L-system notation (Prusinkiewicz and Lindenmayer, 1990) and is further employed to 
characterize architectural tree models in the present paper.  

L-system                                  Symbolic representation 

axiom:   A
production: A  I[K]A

axiom production 

bracketed
string  
notation 

brackets enclose a branch 

Figure 3.  An L-system and its symbolic representation 

 

Biologists often think and describe plant development in terms of cyclic activities of meristems. L-
systems do not specify these activities explicitly; one needs to analyze one or more developmental 
sequences generated by an L-system to fully comprehend the developmental choices and fates of 
different module types.  In order to visualize these fates more directly, Lindenmayer (1975) 
proposed to represent state transitions generated by an L-system model using cyclic “dependence 
graphs”.  Related techniques for specifying the fates of apices include flowcharts (e.g., Bell, 1994; 
Kellogg, 2000), finite-state automata, and Markov chains (see Prusinkiewicz 1998 for a review). 
Unfortunately, all these notions are limited to the description of sequential processes.  In biological 
terms this means that they capture the activities and state transitions of a single module, but they do 
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not properly describe concurrent aspects of development, such as the simultaneous activities of the 
main apex and the lateral apices that it has produced. 

Petri nets and their graphical representation, Petri net graphs, are a well-established formalism for 
describing concurrent processes in computer science (Peterson, 1981).  They were first applied to 
describe plant development by Lück, Raoul and Lück (1983), and further investigated in this 
context by Lück and Lück (1991) and Barlow (1989, 1994).  In this paper we introduce Petri nets as 
a graphical means of specifying architectural tree models.  They can be used in this capacity on 
their own or treated as a visualization for the operation of the corresponding L-systems.  In the 
latter case, they extend Lindenmayer’s intuitive notion of dependence graphs to parallel processes. 

Let us consider a sample event in the life of a plant, for example “A bud becomes a flower.”  If the 
bud is denoted by symbol A and the flower is denoted by symbol K, this event can be captured by 
the L-system production A  K.  This same event can also be described by a Petri net graph shown 
in Figure 4.  This graph consists of four types of objects: circles called places, a bar called a 

transition, and two types of directed arcs: from a place 
to a transition and from a transition to a place.  The arcs 
are oriented to indicate that the leftmost place is the 
input of the transition, and the rightmost place is the 
output of the transition.  The input represents the 
precondition of the event represented by the transition: a 
bud must exist in order to become a flower.  The output 
represents the postcondition: once the event takes place 
(a transition fires, in the Petri net terminology), a flower 
will exist. 

A bud becomes a flower 

A 

A  K 

K 

Figure 4.  A sentence and its representations 
as an L-system production and as a Petri net 
graph 

The fact that the pre- and/or post-conditions are satisfied can be indicated by placing dots, called 
tokens, in the appropriate places. The marking, or the assignment of tokens to places, changes as a 
result of firing transitions during the execution of the Petri net.  The execution of the Petri net 
associated with the sentence “A bud becomes a flower” is shown in Figure 5.  The middle stage, 
with the token placed at the transition, is not a part of the standard Petri net representation, but 
helps conceptualizing the idea that the execution of a Petri net proceeds by moving tokens between 
places along arcs.   

A bud becomes a flower 

KA

A bud becomes a flower

KA

A bud becomes a flower

KA

precondition event postcondition

Figure 5.  Execution of a marked Petri net 

 

As described by Peterson (1981), a Petri net graph may in general have any number of arcs, 
provided that they only connect places to transitions and transitions to places.  Furthermore, a place 
in a marked Petri net may contain an arbitrary number of tokens.  A transition is enabled if each of 
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its input places has at least as many tokens as it has arcs to this transition (multiple tokens are 
needed for multiple input arcs).  An enabled transition may fire by removing tokens from all its 
input places, one per input arc, and creating new tokens that are distributed to the output places, 
again one per arc.  Since a transition may have different numbers of input and output arcs, the firing 
of a transition may change the total number of tokens present in a marked Petri net. 

In the architectural modeling applications: 

• places represent types and states of modules, 
• transitions represent events in which modules change state, produce new modules, or disappear, 
• tokens represent the numbers of modules of each type currently present in the structure. 
For example, Figure 6 compares the L-system and developmental sequence discussed earlier (c.f. 
Figures 1 to 3) with the corresponding Petri net graph.  The comparison reveals that Petri net 
graphs visualize the cyclical character of the activities of the apical meristem A more explicitly 
than L-systems do.  On the other hand, Petri net markings provide only a summary account of the 
number of modules present in the structure, whereas L-system and the resulting developmental 
sequence also indicates how these modules are connected into a structure.  The monopodial 
developmental pattern captured by both formalisms is characteristic of Corner’s architectural model 
(Hallé, Oldeman, Tomlinson, 1978). 

L-system   A  I[K]A   − Corner’s model 

Petri net 

K 

A 

production developmental sequence 

executiongraph 

Figure 6.  L-system production, developmental sequence, and the corresponding Petri net description 
of Corner’s architectural model.  For the sake of simplicity, internodes are not explicitly represented 
in this and subsequent Petri net graphs.   

 

To increase the descriptive power of Petri net graphs, we introduce an additional drawing 
convention. An output arc placed in the middle of a transition indicates the production of a module 
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in the straight or terminal position with respect to its predecessor.  In contrast, an output arc placed 
off-center indicates the production of a lateral module. For example, this convention makes it 
possible to distinguish Petri nets that represent Corner’s model (Figure 6) and Chamberlain’s model 
(Figure 7).  Whereas the axis in Corner’s model is formed as a sequence of modules in straight 
position with respect to each other, the axis in the Chamberlain’s model is formed as a sequence of 
modules in a lateral position.   

L-system   A  I[A]K   −  Chamberlain’s model 

A 

K 

Petri net 

Figure 7.  L-system production, developmental sequence, and the corresponding Petri 
net description of Chamberlains’s architectural model 

Additional aspects of L-system models and Petri nets appear in the characterization of HO models 
presented in the next section.   The capability of both L-systems and Petri nets to capture parallel 
aspects of development occurs in the simplest form in Shoute’s and Leeuwenberg’s models 
(Figures 15 and 16, respectively).  For instance, in Leeuwenberg’s model, an apex A produces a 
branch segment I followed by two lateral apices A that will carry further development, as well as a 
terminal flower or inflorescence K that will disappear after some time. All apices present in the 
structure may act simultaneously.  This simultaneity is captured by the parallel application of 
productions in the developmental sequence generated by the L-system, and by the concurrent firing 
of transitions in the Petri net.  (We ignore here the important differences between synchronous 
application of productions postulated by the formal definition of L-systems and asynchronous firing 
of transitions postulated by the definition of Petri nets).  

As illustrated by Leeuwenberg’s model, multiple output arcs from a transition indicate parallel 
production of modules: new tokens are created to mark all output places.  In contrast, multiple arcs 
that leave a particular place indicate a choice of developmental paths: a token can be used to fire 
one or another transition, but cannot be used to fire both of them simultaneously.  A developmental 
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choice occurs, for example, in Rauh’s model, in which an apex may produce either a lateral branch 
or a lateral inflorescence at any developmental step.  Rauh’s model is illustrated in Figure 13. 

 
3. L-system and Petri net characterizations of HO models 

3.1. Preliminaries 

The following descriptions present our characterization of the HO architectural models using L-
systems and Petri nets.   We have focused on the fate of apices and branching patterns, including 
the position of flowering when sufficient information was available. The L-system models also 
capture the spatial orientation of branches. On the other hand, the distinction between rhythmic and 
continuous growth was not taken into account, and models that are similar except for this trait have 
been grouped together.  In addition, we have omitted two HO models (McClure’s and 
Tomlinson’s).  Their original description (Hallé, Oldeman, Tomlinson, 1978) refers to 
characteristics that are not present in other models (e.g., multiple trunks and stolons), making 
comparisons difficult. 

Our terminology pertinent to the description of branch axes and branching point configurations is 
summarized in Figure 8.  The term axis denotes any linear stem structure from its origin to its 

extremity (Millet, Bouchard and 
Edelin, 1999).  An axis may include 
monopodial or sympodial branching 
points. A monopodial axis is a 
sequence of branch segments, each of 
which extends its predecessor in the 
terminal position.  Sympodial 
branching indicates that the child axis 
or axes appear in the lateral position.  
If a dominant lateral apex takes over 
the role of the terminal apex that has 
aborted, produced a terminal 
inflorescence, or has become 
dominated, the sympodial branching 
produces a pseudo-monopodial axis.  
It is also possible that the 
development is monopodial but the 
leading shoot of the axis arises 
laterally. Another potential variation 
occurs when the terminal and lateral 
shoots have similar vigor, forming a 
pseudo-sympodium.  The resulting 

structure is fundamentally monopodial, but the vigorous branches often form forks.  Finally, 
dichotomous branchin  occurs when the meristem splits forming two new meristems, neither of 
which is produced in t  axil of a leaf. 

Pseudo-
monopodial

A K
A

I

I[ ][A]KAA→

Sympodial 

K
A A

I

A→

Dichotomous

I

A A

A→

with 
lateral leader

A
A

K

I

A I[K][ ]AA

I[K][A]AA→

A

I

K

Leader and laterals
are equivalent

‘Pseudo-sympodial’

Monopodial

 
without branches

A
K

I

A K

I

A I[K]A→

A K

I

I[K][A]AA→

with branches

A

Figure 8.  Branching point configurations 

A

 

g
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3.2. The models 
 

We have organized our characterization of HO models by beginning with the relatively simple 
unbranched and monopodial types, discussing sympodial and dichotomous types next, moving on 
to the models that combine monopodial, pseudo-monopodial and/or sympodial branching in the 
same tree, and concluding with models in which the formation of axes is related to the gradual 
reorientation of branch segments.   

Holttum’s model.  A tree conforming to this model has only one meristem and therefore it is not 
branched. The meristem eventually differentiates into an inflorescence. After fruit maturity, the tree 
dies. Typically, this model is represented by palm-like trees with large leaves.  

In the L-system production, the apex A produces an orthotropic segment O and a terminal 
infloresence K (Figure 9). The Petri net graph shows an apex A eventually differentiating into an 
inflorescence K.  Since the plant is not branched, the apex A does not recreate itself. 

A 

K 
A→ OK 

Figure 9. L-system production, three stages of simulated plant development, and Petri net 
for Holttum’s model.  The modeled plant approximates Corypha elata.

 
Corner’s model. A tree conforming to this model has a single, monopodial, orthotropic and non-
branching trunk constructed by one vegetative meristem. Inflorescences are axillary and growth is 
therefore indeterminate. Examples include some palms, tree ferns and female cycads. 

L-system and Petri net 
for Corner’s model were 
used as examples in 
Section 2 and are also 
presented in Figure 10.  
The disappearance 
(abscission) of old fruits 
is not explicitly 
expressed in these and 
subsequent models. 

K

A

A → O[K]A 

Fig. 10. L-system production, two stages of simulated plant development, and Petri 
net for Corner’s model  
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Roux and Cook’s models.  The trunk is monopodial, and indeterminate. The branches are 
plagiotropic, usually monopodial and indeterminate with lateral flowers. Growth is continuous in 
both models and the main difference is that in Cook’s model the branches are phyllomorphic (that 
is, axes are morphologically recognizable as branches but are equivalent to compound leaves).  
Coffee is a familiar example exemplifying Roux’s model. The rubber tree, Castilla elastica is an 
example of Cook’s model.  

The L-system and Petri net specifications (Figure 11) reflect the single-compound character of this 
architectural model.  The main-axis apex A produces a sequence of orthotropic trunk segments O 
with lateral apices B.  Apices B produce plagiotropic segments P with lateral flowers K.   

A → O[B]A 
B → P[K]B 

ba 
A

B 

K 

Figure 11. L-system productions, Petri net, and simulations of models of Roux (a) and Cook (b) 

Massart’s model. The growth of the trunk is monopodial, rhythmic, and indeterminate. Main 
branches are plagiotropic and are produced in whorls. Familiar examples include Norfolk Island 
pine (Araucaria heterophylla) and species of fir. 

The L-system and Petri net specifications (Figure 12) reflect the double-compound character of this 
architectural model.  The main-axis apex A produces the trunk as a sequence of orthotropic 
segments O and the associated whorls of lateral apices B.  These apices create plagiotropic first-
order branches.  Each branch segment P is associated with a lateral flower of inflorescence K or 
with apex C that will create a second-order branch.  The second-order branches consist of 
plagiotropic segments P with lateral flowers K.   

A → O[B]nA 
B → P[K]B 
B → P[C]B 
C → P[K]C 

n 
B 

A 

C 

K

Figure 12. L-system productions, three stages of simulated plant development and Petri net for 
Massart’s model 
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Rauh and Attim’s models. The trunk is monopodial.  Branches are orthotropic and 
morphogenetically equivalent to the trunk. Flowering is always lateral. Growth is rhythmic in 
Rauh’s model and more or less continuous in Attim’s model.  Temperate examples of Rauh’s 
model include ash, oak, pine, maple, and larch. Attim’s model is represented by mangrove.   

In the L-system, apex A produces an orthotropic segment with the associated flower K, or recreates 
itself in both the terminal or lateral positions (Figure 13).  These developmental choices are also 
represented in the Petri net.  

Green 
ash A 

K

Figure 13. L-system productions, three stages of simulated development, and Petri net for Rauh and 
Attim’s models.  Inset shows a simulated green ash tree, which is a representative of Rauh’s model. 

A → O[K]A 
A → O[A]A 

Chamberlain’s model. The main axis is an orthotropic pseudo-monopodium. The development of 
each sympodial unit is 
terminated by the formation of 
an inflorescence. Examples 
include some cycads and the 
common indoor plant 
Philodendron selloum.  

A

K
A → O[A]K 

Figure 14. L-system production, two stages of simulated development, and 
Petri net for Chamberlain’s model 

The L-system and Petri net for 
Chamberlain’s model were 
used as examples in Section 2 
and are also presented in Figure 
14.    

Figure 15. L-system productions, a model of Doum palm, and Petri 
net for Shoute’s model 

K

A

Shoute’s model.  The tree has one or more orthotropic or obliquely oriented trunks. After the 
formation of a branch segment, a meristem splits by equal dichotomy to form two new branches. 

Flowers are always lateral. The model 
is exhibited by Doum palm and the 
extinct Lepidodendron.   

The L-system and Petri net 
specifications of this model reflect the 
developmental choices of an apex, 
which may produce an orthotropic 
segment with a lateral flower or divide 
and recreate itself in two lateral 
positions (Figure 15). 

A → O[K]A 
A → O[A][A] 
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Leeuwenberg’s model. The tree consists of orthotropic modules forming a branched sympodium 
with no distinct main stem.  Each 
module bears a terminal inflorescence. 
Examples include sumac, many lilacs, 
and dogwoods. K

A

A → O[A][A]K 

Figure 16.  L-system production, three stages of simulated 
development, and Petri net for Leeuwenberg’s model 

In the L-system, apex A produces an 
orthotropic segment O with a terminal 
inflorescence K, and recreates itself in 
two lateral positions (Figure 16).  The 
activities of the apex are also clearly 
visualized by the Petri net. 

 

Scarrone and Stone’s models.  The trunk is monopodial, indeterminate and bears orthotropic 
branches. The branches ramify sympodially by substitution of the terminal inflorescence. The main 
difference between the models is that growth is rhythmic in Scarrone’s model and continuous in 
Stone’s model.  Examples include horsechestnut (Scarrone) and species of Pandamus (Stone). 

The L-system and Petri net graph indicate that Scarrone and Stone’s models can be viewed 
formally as compositions of Corner and Leeuwenberg’s models (Figure 17).  Corner’s model 
specifies the trunk as a monopodial structure bearing lateral organs, which in this case are entire 
branches rather than inflorescences.  Leeuwenberg’s model specifies the structure of the branches. 

Petit’s model.  The monopodial, orthotropic trunk grows continuously and produces sympodial 

A → O[B]A 
B → O[B][B]K K

B Aa b

plagiotropic branches.  Inflorescences are terminal. Examples include Morinda citrifolia and 
cotton. 

 

Figure 17. L-system for Scarrone and Stone’s models, three stages of simulated development according to 
Scarrone’s model (a, Biddens sp.), a structure generated using Stone’s model (b, Pandamus tectorius), and
Petri net for both models 
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The L-system for Petit’s model differs 
from that of Scarrone and Stone’s 
models only by the plagiotropic, as 
opposed to orthotropic, orientation of 
the lateral branches (Figure 18).  As 
branch orientation is not reflected in 
our Petri net graphs, the Petri net is the 
same for all three models.  

A → O[B]A 
B → P[B][B]K 

Figure 18. L-system productions and three stages simulated 
development for Petit’s model.  Petri net is the same as for 
Scarrone and Stone’s models 

 
 

 
Fagerlind’s model.   The monopodial trunk has whorled tiers of plagiotropic branches that are 
sympodial by apposition. Renewal shoots arise where the plagiotropic segment turns up and 
eventually forms a terminal inflorescence. An example is Magnolia grandiflora. 

In the L-system, the main-axis apex A produces a sequence of orthotropic segments O with the 
associated whorls of terminal buds B. Each B produces a plagiotropic branch segment B and 
recreates itself in two lateral positions, whereas the apex in the terminal position changes its state to 
C, to produce a relatively short orthotropic segment with a terminal inflorescence (Figure 19). The 
activities and changes of state of apices are clearly visualized by the Petri net. 

C

K

BA 

n 

A → O[B]nA 
B → P[B][B]C 
C → OK 

Aubréville’s model.  The trunk is monopodial, producing whorls of plagiotropic branches that are 
sympodial by apposition. Each renewal shoot has a long plagiotropic basal segment followed by an 
indeterminate orthotropic segment.  The terminal meristem of each segment remains active to 
produce successive clusters of leaves with lateral flowers.  Well-studied examples include species 
of Terminalia.  

Figure 19. L-system productions, three stages of simulated development, and Petri net for 
Fagerlind’s model.  The inset shows a close-up of the branching pattern. 

The L-system and Petri net for Aubréville’s model reveal that it formally differs from Fagerlind’s 
model only in the fate of the apex C (Figure 20).  In Aubréville’s model the orthotropic segment 
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that terminates a plagiotropic branch is indeterminate and bears lateral flowers, whereas in 
Fagerlind’s model it is determinate and bears a terminal inflorescence. 

A → O[B]nA 
B → P[B][B]C 
C → O[K]C 

B A

C 

K 

n

 

  

 
Koriba’s mo
sympodial by
equivalent, o
include sandb

The L-system

A → O[A]

Figure 21. L-sy
net for Koriba’

Prévost’s mo
branches. The
inflorescence

In the L-syst
dominant sub
addition of a 
B.  Each ap

 

Figure 20. L-system productions, three stages of simulated development, and Petri
net for Aubréville’s model 
del. A pseudo-monopodial trunk is formed by a sequence of branches that are 
 substitution of the terminal inflorescence. Although all branches are initially 

ne branch becomes more erect and dominant and forms the relay axis. Examples 
ox tree and species of Catalpa. 

 specifies that an apex A produces an orthotropic segment O terminated by an 
inflorescence K and 
recreates itself in a whorl 
of n+1 lateral apices 
(Figure 21). One of these 
apices is dominant 
(indicated by A).  The 
creation of terminal 
inflorescence and creation 
of n+1 non-equivalent 
lateral apices are also 
captured by the Petri net.  
The bold arc with the 
associated label n is a 
shorthand notation for a set 
of n arcs. 

K

A

[A]nK 

n

stem production, four stages of simulated development, and Petri 
s model. 

del. A pseudo-monopodial trunk is formed by a sequence of proleptic, subdistal 
 branches arise distally, are sylleptic and plagiotropic by substitution of the terminal 

. This model is common in the genus Cordia. 

em, the trunk apex A produces an orthotropic segment O and recreates itself as a 
distal lateral apex A (Figure 22).  The development of segment O further continues by 
distal segment O' that support terminal inflorescence K and a whorl of lateral apices 
ex B produces a plagiotropic sympodial branch, with flowers K terminating the 
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individual branch segments.  Formally, the structure of branches is the same as in Petit’s model.  
The Petri net captures the fate of apices, but does not provide details regarding their dominance 
relations and relative position and orientation of branches. 

n 

K

B 

A 

A → O[A]O'[B]nK 
B → P[B][B]K 

Figure 22. L-system productions, three stages of simulated development, and Petri 
net for Prévost’s model 

 
Nozeran’s model.  The trunk is pseudo-monopodial. The apex of the trunk aborts and a tier of 
sylleptic, plagiotropic branches forms distally.  A proleptic, subdistal orthotropic shoot forms the 
next relay axis. Flowering is often lateral but may be terminal. An example is cocoa (Theobroma 
cacao). 

The L-system and Petri net specify the development of the trunk and branches in a manner similar 
to Prévost’s model, except that apices A and B abort (as indicated by X) instead of producing 
terminal flowers or inflorescences (Figure 23).  In Nozeran’s model, flowers K are produced in a 
lateral position by apices B, as a developmental alternative to branching. 

A 

KX

n B 

A → O[A]O'[B]nX 
B → P[B][B]X  
B → P[K]B 

Figure 23. L-system productions, three stages of simulated development, and Petri net for Nozeran’s model

Mangenot’s model.  A pseudo-monopodial main axis is built by the superposition of lateral shoots 
formed on the curve of parent shoots with mixed orientation.  The distal plagiotropic segment of 
each shoot becomes a branch. One of the best-known temperate examples is highbush blueberry, 
Vaccinium corymbosum. 
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A → P1[A]B  
B → P2[B]B  
P1 → O 

B 

A 

X K

Figure 24. L-system productions, three stages of simulated development, and 
Petri net for Mangenot’s model 

 

In the L-system, the apex A produces an orthotropic segment and recreates itself in a dominant 
lateral position (A).  Meanwhile, the terminal apex changes its state to B, and formally follows the 
same path of development as the lateral apices in Nozeran’s model (Figure 24).  The similarity 
between Nozeran’s and Mangenot’s models is further reflected in the similarity of their respective 
Petri nets. 

 

Champagnat’s model.   As in Mangenot’s model, pseudo-monopodial axes in Campagnat’s model 
are built by the superposition of lateral shoots formed on the curve of parent shoots with mixed 
orientation.  The distal portion is initially orthotropic, but becomes pendulous under its own weight, 
which creates a plagiotropic appearance. A single main stem is rarely evident. Temperate examples 
include species of Rosa, Sambucus, and Rubus. 

A → O1[A]B 
B → O2[B]B  
O2 → P 

B
 

A 

Figure 25.  L-system productions, four stages of simulated development, and Petri net for 
Champagnat’s model. The arrows in the first drawing indicate the direction of shoot reorientation. 

 

The L-system captures the essence of Champagnat’s model by distinguishing two types of 
orthotropic branch segments, denoted O1 and O2 (Figure 25).   The apex A produces an orthotropic 
axis segment O1 before changing state to B.  An apex B produces a branching structure made of 
segments O2.  These segments are initially orthotropic, but gradually change their orientation to 

 16



plagiotropic.  Meanwhile, the apex A recreates itself in the dominant lateral position (A) at the 
boundary between segments O1 and O2. This leads to the production of a pseudo-monopodial axis 
formed by a sequence of segments O1.  The Petri net shown in Figure 25 is a comparatively less 
useful representation of Champagnat’s model, as it does not capture the reorientation of branch 
segments.  On the other hand, it clearly depicts the fate of the apices. 

Troll’s model.  Branch segments initially are plagiotropic; the tree grows in height because the 
basal portions become secondarily erect.    Axis development is sympodial and renewal shoots arise 
at the bend of parent shoots. The distal part becomes a branch that may or may not be determinate. 

Temperate examples include species of 
Ulmus, Celtis and Prunus. A → P1[A]B  

B → P2[B]B  
P1 → O 

This L-system (Figure 26) reverses the 
axis formation in Champagnat’s model: 
initially all branch segments are now 
plagiotropic, and proximal parts 
become secondarily orthotropic.  Since 
our Petri net specifications do not 
capture branch (re)orientation, the Petri 
net for Troll’s model is the same as for 
Champagnat’s model. 

Figure 26. L-system and simulated development illustrating 
Troll’s model. The arrows in the first drawing indicate the 
direction of shoot reorientation. 

 

4.  Discussion 
In this paper, we have proposed L-systems and Petri nets as a formal method for characterizing HO 
architectural tree models.  Both formalisms help understand the essence of these models by 
providing clear, concise, and unambiguous descriptions.  L-systems and Petri nets also facilitate 
comparisons between models (for example, Prévost’s vs. Nozeran’s model and Champagnat vs. 
Troll’s model), and make it possible to describe more complex models as a composition of simpler 
ones (c.f. our description of Scarrone and Stone’s models in terms of Corner and Leeuwenberg’s 
models). In addition, the L-systems that characterize the architectural models may serve as a 
foundation for constructing simulation models of specific trees. 

We have introduced simple extensions of both formalisms to increase their expressive power. In the 
case of L-systems, we indicate dominant apices by underscoring symbols that represent them.  In 
the case of Petri nets, we use a simple drawing convention to distinguish between the terminal and 
lateral apices.  A comparison of both formalisms indicates that L-systems provide a more complete 
characterization of the architectural models, since they capture the configuration of the branching 
points and the dominance relation between the apices.  On the other hand, Petri nets provide a more 
intuitive representation of the fate of apices.   

Although both L-systems and Petri nets capture the simultaneous development of different parts of 
a growing organism, in theory they treat simultaneity in a very different manner.  According to the 
formal definition (Lindenmayer, 1968; Prusinkiewicz and Lindenmayer, 1990), L-systems operate 
in discrete time intervals, with all modules being transformed in synchronous steps.  In contrast, 
Petri nets operate asynchronously, in concurrent events that may take place at any instant of 
continuous time.  A careful analysis of these differences is an interesting problem open for further 
research.  Its solution may lead to a better understanding of the relation between L-systems and 
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Petri nets in the context of biological applications, and serve as the basis for formally characterizing 
the differences between continuous and rhythmic growth. 

Since the seminal work by Hallé and Oldeman (1970), new concepts such as the architectural unit, 
intercalation, and tree metamorphosis have been introduced to architectural tree analysis.  They 
provide the conceptual framework and vocabulary for increasingly complete and accurate 
characterization of tree architectures (see review by Edelin, Moulia and Tabourel, 1995).  A formal 
characterization of these new concepts is also an interesting problem open for further study. 
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