

Imaging and optical properties of single core-shell GaAs-AlGaAs nanowires

L.M. Smith¹, <u>Thang B. Hoang¹</u>, L.V. Titova¹, H.E. Jackson¹ J.M. Yarrison-Rice², Yong Kim³, H.H. Tan³, C. Jagadish³

¹Department of Physics, University of Cincinnati, Cincinnati, OH ²Department of Physics, Miami University, Oxford, OH 45056 ³Australian National University, Australia

Australian Research Council

Motivation

we study electronic structure and optical properties of single core-shell GaAs-AlGaAs nanowires

> bare GaAs nanowires: low quantum efficiency due to nonradiative surface recombination

core-shell GaAs-AlGaAs nanowires have much higher quantum efficiency

Sample growth

Single nanowire studies

nanowires were removed from the growth substrate into solution and deposited onto a silicon substrate

a single nanowire:

~80nm in diameter, ~5-8 μm long

Field-Emission Scanning Electron Microscope (FESEM) image

wire's diameter > Bohr exciton diameter

=> expect no quantum confinement

Experimental setup

Emission energy

Low-T PL imaging

(Heiblum et al. J. Vac. Sci. Tech. B2 233 (1984))

PL emission is *strongly polarized* parallel to the wire, and is *strongly enhanced* when the laser excitation is polarized parallel to the wire

Resonant excitation

Conclusions

- core-shell GaAs-AlGaAs nanowires display strong PL emission (nonradiative surface recombination is suppressed)
- PL emission is *strongly enhanced* when the laser excitation is polarized parallel to the wire, and is *strongly polarized* parallel to the wire
- striking excitation resonances at ~74 meV and ~150 meV above the PL emission line
 - 74 meV: 2LO resonance phonon-assisted absorption (GaAs)
 - **150 meV: LO resonance of GaAs (higher order) or AlGaAs**

Dove Prism (DP) can be used to rotate image of a nanowire

