Ch. 6 Homework Solutions

Ch. 6 Homework Guestion 4, 7, 15, 18, 20, 27, 28, 33, 34, 37, 39 Even isses 1, 3, 5, 7, 1, 13, 14, 17, 18, 20 Questions: (B) A parked can has no well ity & thus no it I should a person was moving at the same speed & his order mass in a constant, then the D(mo) is the same Same in (b) 1200 gloves have more stuffing & so would indease the time it takes to stop a blow, so there is less torce for the same (hange in momentum increases as it falls. When it Stuties the floon, it reverses	Phyl
Questions 4, 7, 15, 18, 20, 27, 28, 33, 34, 37, 39 Exercises 1, 3, 5, 7, \$13, 14, 17, 18, 20 Questions: (1) A parked our has no welicity & thus more I hapulse = F Dt = (ma) Dt = D(mv) ef the genon was moving at the same speed & his or her mass in a constant, Then the D(mv) is the same. — Same in (5) 1203 gloves have more stuffing & so would inclease the time it takes to stop a blow; so there is less force for the same Change in momentum inverses as it	(
Durstions! (Durstions! (D) A parked on has no wellicity & thus no so (D) Impulse = F Dt = (ma) Dt = D(mv) If the person was morning at the same speed & his or her mass in a constant, Then the D(mv) is the same Same in (15) 1200 gloves have more stuffing & so would implease the time it takes to stop a blow; so there is less force for the same Change in momentum inverses as it	
D A parked can has mo wellisty & thus mo of I Impulse = F Dt = (ma) Dt = D(mv) If the person was moving at the same speed & his or her mass in a constant, Ithen the D(mv) is the same Same in (5) 1203 gloves have more stuffing & so would implease the time it takes to stop a blow; as there is less force for the same Change in momentum. (8) The ball's momentum inverses as it	
Dependent = F Dt = (ma) Dt = D(mv) If the person was morning at the same speed & his or her mass in a constant, Then the D(mv) is the same Same in (5) 1200 glowes have more stuffing & so would increase the time it takes to stop a blow; so there is less force for the same Change in momentum increases as it	
ef the person was morning at the same speed & his or her mass is a constant, then the D(mor) is the same Same in (5.) 1200 gloves have more stuffing & so would increase the time it takes to stop a blow; so there is less force for the same Change in momentum.	mome
(15.) 1200 gloves have more stuffing & so would indease the time it takes to stop a blow; so there is less force for the same Change in momentum. (18.) The hall's momentum increases as it	
(15) 1200 gloves have more stuffing & so would increase the time it takes to stop a blow; so there is less force for the same Change in momentum. (18.) The hall's momentum increases as it	inguls
[8.) The hall's momentum increases as it falls. When it Studies the floor, it reverses	
falls. When it Shires the floor, it reverses	
Julls. When it Strikes the floor, it reverses direction, as the floor provinces the impulse. Then the hall's momentum decreases as it	
comes had up.	

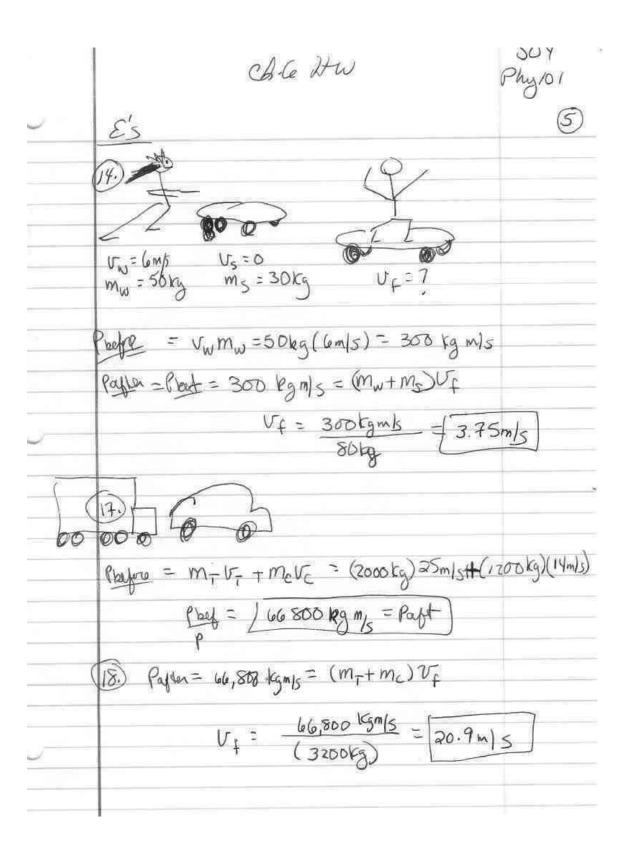
CA.6 HW (5) 20.) F, = 6N forst, = 350 C Fz = 4N forstz = 55ec Impulse = F, Dt = (60) (3sec) = 18Nsec Imp. z = (4N)(5 sec) = /20Nsec | larger 27.) Turo olyets m=mz, v=vz Result: If 2 skick together, their moment was are equal but in opposite directions instally so after collision the total momentum.

The zero & they stop mowing. 28) $m, V_1, V_2, m_z=3m_1$ V2=5, $p_1 = m_1 v_1$ $p_2 = m_2 v_2 = 3m_1 v_1$ Pute $P_1 = 3\rho$, $P = P_1 - P_2 = -2\rho$, Papter = -2p1 = -2m, v, = (m, +mz) vf They I hall will be moving to the left.

Ch 6 HW Q's 33. Before Release Papt = 0

Often Release Papt = 0

Vi=7.


Im, N = 2m/s Paple = 0 = mzv, -m, v, 0 = 2m, V2 -m, (2m/s) Vz = 2 m, (mls) - 1 m/5 = Vz 37) Result P2 = DP, lut in different directions Ptotal well be mostly North by East 5=2V, mz-m Persuet P2 = 3m2Vz p2)P,

P2 = 3m2Vz p2)P,

P = M,(2Vz)

M, Result mostly East by North? 3 m2 1/2 -

Ch 6 HW (4) 1) p=mv= 1200 kg (30m/s)= 36000 kgm/s=P 3.) Powelet = mv = (0.01kg)(900 m/s) = 9kg m/s Phaseball = 9kg m/s = mu VBB = 9 Rg m/5 = 62 m/5 (5.) FDt = Impulse = D(mv) F= D(mv) = 1500 bg (30m/s-0) = 5625 N F) Impulse = 2(mv) = 1400 kg (25m/s-0) = 35000 kgm/s Father m=80kg Son m=40kg $V_s=7$ $V_s=-3m/s$ Physica = 0 = Papler = mur - ms vs $V_f = \frac{m_5 V_5}{m_f} = \frac{(40 \text{ kg})(3 \text{ m/s})}{80 \text{ kg}} = 1.5 \text{ m/s} = V_f$

CA-G HW	504 phy/01
<u>E'5</u>	(6)
(20.) [m 6 m 00 m 00 m -	
V=10m/s V=0	
m = 18,537 kg	
Play = M,V, = 18,537 kg (10m/s) = 185,3	70 kgm/s
Part = (4m)vf = 185,370 kg m/s	
$V_f = \frac{185,370 \text{ kgmls}}{4(18,537\text{kg})} = \frac{1}{2}$	5m/5
11,11,22,20	
/	